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ABSTRACT

Tracing has been applied to study and understand the be-
havior and performance of distributed systems. Despite the
attention this topic has received, two important aspects
are still challenges and especially harmful in the context
of microservice-based applications: source code instrumenta-
tion and performance overhead. Existing attempts resort on
working around overhead (e.g., sampling techniques) and do
not address microservices architecture’s high technological
heterogeneity. Our main contribution is a novel approach for
tracing microservices which joins proxies’ usage (for handling
tracing concerns) and operating system syscalls monitoring
(for diagnosing causality between multiple requests). It makes
advances on the field by completely separating instrumen-
tation and application code while minimizing performance
overhead. We carry out a performance evaluation to show the
impact of our solution on the execution of microservice-based
applications. Our proposal fosters developers’ productivity
by allowing them to focus on business logic instead of in-
strumentation and copes with the intrinsic heterogeneity of
microservices by relying on deployment modifications and
operating systems mechanisms solely.
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1 INTRODUCTION

The microservices architectural style suggests the concept of
autonomous, decoupled, and technologically heterogeneous
software components which interact with each other through
lightweight communication protocols in a choreographic fash-
ion. This style has been widely adopted to face everyday chal-
lenges related to software design, development, maintenance
and deployment [18]. It leverages collaboration between dis-
tributed teams which may independently develop and deploy
software systems by fostering the definition of boundaries be-
tween components; it promotes system resiliency as services
can be easily replicated, and failure is not feared anymore,
but embraced; and it also makes easier to scale applications
in and out by leveraging automation to a maximum degree.

These facilities come at their price: an ecosystem of highly
heterogeneous, small and replicated services imposes new
challenges, such as performance and services allocation issues
[11]. One of them is the difficulty to debug tricky production
problems. For instance, a subtle bug in one specific component
of a microservice-based architecture might lead to poor user
experience and may not be detectable through HTTP error
codes nor any other means which rely solely on data provided
by applications and protocols they leverage.

Another challenge is to arrange components in a manner
that satisfies some given system’s properties, such as availabil-
ity and latency. For instance, components could be co-located
to diminish network latency or spread to reduce competition
for resources. Whatever the goals, awareness of the actual
current arrangement, which may not necessarily reflect the
projected one, is mandatory.

Both components’ arrangement [22] and debugging [21, 23]
problems have been approached with distributed tracing
tools [7, 9, 14, 24, 25, 27]. However, they usually require
application developers to change their source code or merge
software dependencies onto their software stack to achieve
monitoring goals. Moreover, tracing tends to incur in overhead
on the system-under-monitoring. Overhead issues have been
commonly worked around through sampling techniques, while
library- and middleware-level instrumentation are broadly
applied for mitigating the need for code changes. Despite
their popularity, these strategies are not ideal solutions as
the former may mask non-trivial bugs, and the latter still
requires software changes.

The generally high costs of instrumentation-related efforts
have motivated the proposal of strategies for cheaper instru-
mentation in multiple research fields [12, 26]. In this paper,
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we propose a strategy for enabling microservices’ tracing
which keeps developers away from the burden of code instru-
mentation and has a reduced impact on the application’s
performance. Our primary goal is to propose a strategy for
tracing services’ behavior without changing their source code
(nor imposing dependencies onto the software stack) neither
incurring in high overhead. We do this through separation
of application- and instrumentation- related code which is
accomplished by using proxies for handling tracing tasks
along with the monitoring of syscalls for allowing proxies to
keep track of requests’ causality relationships.

This paper is organized as follows: Section 2 introduces
basic concepts needed to understand the proposed solution;
Section 3 presents the solution in details; Section 4 presents
an evaluation of the proposed strategy, and related works
are discussed in Section 5. Finally, Section 6 gives insights
on what has been achieved to this point and the next steps
towards a readily applicable and efficient strategy for tracing
microservices.

2 BASIC CONCEPTS

This section introduces some basic concepts related to mi-
croservices architectural style and tracing of distributed sys-
tems.

2.1 Microservices Architectural Style

The microservices architectural style, or microservices ar-
chitecture, is the next step succeeding Service-Oriented Ar-
chitecture (SOA) [6]. It dictates the conception of small,
independent, and specialized software components which in-
teract with each other for fulfilling features provided by the
system from which they are constitutive elements. What
makes microservices particularly useful, and also challenging,
is that they take fine-grained service-oriented architectures to
the next level: each component must solve one single problem
from the business domain and be independently developed,
deployed and executed.

By promoting extensive decoupling between architectural
elements, microservices foster flexible ways of collaborative
software development, computing resources allocation, and
design decision making. Such flexibility paves the ground for
a highly complex ecosystem of communicating pieces of soft-
ware [6]. This heterogeneity poses a challenge to understand
the systems’ behavior as they grow larger in complexity and
hampers the debugging when problems arise. It also restricts
the enforcement of traditional methods for understanding
a system’s behavior and debugging. For instance, logging
has a high cost when the system is composed of hundreds of
components, implemented in several different programming
languages, frameworks, and libraries, and communicating
through a multitude of protocols.

2.2 Distributed Tracing

Tracing is a strategy for understanding distributed systems’
behavior, implementing optimizations and fixing problems
which is not new [8, 15, 20]. In the context of microservices, it

enables us to extract and expose the behavior of microservice-
based applications by tying up messages exchanged by the
microservices. Tracing systems like X-Trace [7] and Dapper
[24] adopt this strategy to propagate tracing-specific data
traveling within exchanged messages to precisely diagnose
causal relationships between exchanged messages. Another
characteristic of tracing is the instrumentation of systems’
components and the reporting of data produced via instru-
mentation to a monitoring agent responsible for their later
exposure through a convenient interface.

The traditional way for enabling tracing would require that
all microservices be instrumented. The first one should be
modified in order to generate identifying tags for each one of
the incoming user requests and maybe other tracing-related
data such as sampling decision. Moreover, all microservices
must be changed in order to propagate these data. This
enables tracing features such as diagnosis of causality rela-
tionship between requests and sampling. Finally, each one
of the microservices should report tracing data to a trace
server. This strategy is highly dependent on data generated,
propagated and reported by components, which strictly tar-
gets tracing’s enablement and regards two sets of infomation:
one with data which must be propagated across application’s
messages and the other with data which is sent to the trace
server.

The first one should be as small as possible as it will impact
on application’s messages size. It commonly includes the iden-
tifying tags and sampling decisions, and travels along with
application-specific data, leveraging the protocols application
use to exchange the messages between the microservices. The
second one also includes identifying tags, which are required
for establishing requests’ causality, but may not include some
data present in the first set, such as sampling decisions. It
usually includes timing information but may also include pro-
tocol’s version, application-specific data, message’s attributes
(e.g., size, contents), and so on. It is formatted and sent to
the trace server respecting a communication protocol which
does not need to be the same as the one used for exchanging
application-specific messages. Beyond dependence upon spe-
cific data, tracing also depends upon code instrumentation
for providing aforementioned modification needs. There are
many ways how a microservice-based application developer
can instrument the source code to enable tracing. She could,
for instance, develop ad-hoc instrumentation logic for each
microservice, which would certainly represent a cumbersome
effort. It would also be possible to leverage libraries but this
would still require representative effort, mainly due to the
variety of programming languages in a microservices context.
We strive for a more adequate approach for enabling tracing
of microservices, which is presented in the next section.

3 TRANSPARENT TRACING OF

MICROSERVICE-BASED

APPLICATIONS

“Use the right tool for the right job”, one of the guiding
principles of the microservices architectural style, means
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using many different programming languages, frameworks,
and libraries. The result is a highly complex ecosystem of
small pieces of software, each one designed and implemented
with well-scoped requirements in mind. Hence, these appli-
cations need better ways of behavior tracing and bug fixing
[6]. Microservices developers and operators might benefit
from distributed tracing tools as they allow a better under-
standing of systems’ behavior and performance. However,
their adoption in this context demands considerable time
and effort as it implies performing changes in several soft-
ware components, programming languages, and frameworks.
Instrumenting them is impractical and using off-the-shelf
solutions (when available) is not a good alternative as it still
requires knowledge about APIs and configuration properties,
and changes in application’s source code.

Our proposal tackles the increased cost (i.e., time and
money invested in instrumentation-related activities) of en-
abling distributed tracing for microservice-based applications
and advances microservices’ tracing by providing developers
and operators with means for tracing their applications’ be-
havior and performance without demanding any source code
modifications.

We reduce the time spent by developers on instrumenta-
tion to a minimum by relying on modifications to deployment
schema and monitoring of processes’ activities instead of
changing applications’ source code. The deployment is mod-
ified to inject intermediate software components between
application’s microservices while the monitoring serves to
track causalities between multiple requests. This plan is con-
cretized twofold: first, we share guidelines for the deployment
and usage of tracing-specialized proxies; then, we provide a
strategy for monitoring specific Linux syscalls which allows
tracking requests causality and an implementation for it.

Our approach is capable of effectively determining causal-
ity of messages generated by users’ requests by combining the
intermediate components’ deployment and processes’ mon-
itoring. The general picture is that the proxies generate
and report tracing-specific data while the monitoring prop-
agates portions of these data necessary for diagnosing re-
quests causality in order to free applications’ code from any
instrumentation-related modification.

3.1 Deployment and Usage of Proxies

Microservices are usually deployed through containerization
technologies, e.g., Docker1, in which principles like local-
ization transparency along with its benefits are embodied,
e.g., easiness of scaling, moving, and replacing components.
This scenario helps the adoption of proxies to intercept all
communications by changing the configuration related to
microservices’ deployment schema.

We use proxies for intervening all network interactions be-
tween microservices by deploying one proxy per microservice.
One could argue that it would be possible to achieve our
goals with less proxying units, but keeping 1:1 ratio helps
to simplify and understand the deployment schema. In this

1https://docker.com

way, automation becomes easier, which aligns quite well with
microservices’ principle of automating everything. In practice,
there are no reasons for deploying more than one unit per
microservice instance as this strategy increases the resource
consumption due to the extra components. Although proxies’
resources consumption is reduced, it is not to be neglected.

Proxies in our approach are aware of any message ex-
changed between microservices and use them for generating
and reporting tracing information. Their responsibilities are
the same as the ones attributed to instrumentation in the
strategy presented in Section 2.2.

request

A B C

1 2 54 87

3 6

TS
x

y

z

Figure 1: Overview of proxies deployment

Figure 1 shows a scenario in which three microservices,
namely A, B, and C, interact with each other to serve a
single request. By applying our strategy, we interpose three
proxies (striped hexagons) between them and deploy a trace
server (TS). Circled numbers indicate the order in which
communications occur: A receives the user’s requests, and
requests something to B which in turn sends a request to C.
Both incoming ( 1 , 4 and 7 ) and outgoing ( 2 , 5 and

8 ) requests are received and sent through proxies, which
report them to TS. Tracing-related requests ( x , y and z )

do not need to occur in any particular or specific moment. Re-
sponses are omitted for simplicity. Note that proxies shall also
inject meta-information used to determine requests causal-
ity. For instance, if request is an HTTP request lacking
an X-Request-Id header, the first proxy (one which handles
request) shall inject the missing header, which should then
be propagated by further services and proxies.

This approach is protocol-agnostic as it neither relies upon
any protocol-specific information nor structure. However,
other protocols demand extra efforts like requiring specific
ways for both extracting tracing information and tracking
requests causalities. We also do not prescribe any particular
protocol for communication between proxies and the trace
server (TS). To the extent of what we are proposing here,
tracing of other protocols would require proxies capable of
supporting them which must be properly configured to do
so.

The use of proxies for tracing microservices is recent and
supported by tools like Istio2. However, it lacks transparent
tracing as it demands application’s code changes to propagate
trace meta-information in order to track requests causality.

2https://istio.io
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We leverage Linux system calls (syscalls) monitoring for
eliminating this shortage.

3.2 Syscalls Monitoring

Syscalls are basic procedures exposed by Linux’s kernel to ap-
plication’s processes to perform critical actions like hardware
manipulation. By monitoring them, we can track process be-
havior related to the execution of requests paths and obtain
and inject tracing-related meta-information. This approach
is how we accomplish meta-information propagation without
requiring any modification on application’s code.

KernelTracer Tracee

initialize

ptrace
syscall

inform syscall

manipulate syscall

Figure 2: Syscalls interception overview

Figure 2 depicts the elements involved in the syscalls moni-
toring strategy and the main interactions between them. The
Tracer (our monitor process) is responsible for the Tracee
(microservices processes) initialization and setup of syscalls
monitoring, which is done through the ptrace3 system call.
After setup, Linux’s Kernel informs the Tracer whenever the
Tracee performs a system call.

We identified the syscalls invoked by threads for receiving
and sending HTTP requests. Syscalls’ execution is always
evaluated in the context of a performing thread because we
use this association for diagnosing requests causality: we
assume that any outgoing request performed by a thread
while it is servicing an incoming request is caused by the
incoming request. In practice, we intercept the syscall used
to receive an HTTP request for extracting tracing meta-
information from HTTP headers and syscalls used to execute
outgoing requests for injecting tracing meta-information into
them. Examples of such syscalls are read, which is used
for reading an incoming request from a socket, and sendto,
which is used to send requests.

Any new thread starts in the idle state and can receive
incoming requests once it calls the accept syscall. When
this happens, we register the socket by which the thread can
receive requests and change its state to Waiting requests. In
this state, three events may happen: new sockets may be open,
open sockets may be closed or a request may arrive. When
a new socket is open, we register it and keep the thread in
Waiting requests state. When the socket is closed, we just
remove it from our records and take the thread back to the
idle state if it hasn’t any more open sockets. When a request
arrives, we extract and record its tracing headers and change
thread’s state to Servicing. In this state, a thread can close

sockets, perform outgoing requests (sendto) or create new
threads (clone). When the thread closes sockets, we remove
them from our records and take it back to the idle state

3http://man7.org/linux/man-pages/man2/ptrace.2.html

if there aren’t any remaining open sockets. If an outgoing
request is triggered, we inject tracing headers into it. If new
threads are created, we just start monitoring them with the
difference that they are already put in the Waiting requests

state and associated with their parent’s open sockets and
incoming tracing headers. We use SECCOMP4 filters to
reduce the overhead posed by syscalls’ interruptions. These
interruptions may be numerous and expensive due to the
context switch that happens between kernel- and user-space.

Tracer Tracee Kernel
fork()

fork() = 0
fork() = tracee_id

ptrace(traceme)

prctl(no_new_privs)

prctl(set_seccomp)

kill()

waitpid(-1)

waitpid(-1) = tracee_id

ptrace(setoptions,

           tracee_id)

ptrace(cont, tracee_id)

execve()

Figure 3: Tracee process initialization.

Figure 3 shows a Tracee setup. Tracer first forks a child pro-
cess to run the microservice’s code. Then, it waits (waitpid)
for the Tracee to perform essential operations: inform the ker-
nel that it must be traced by its parent (ptrace(traceme));
forbid ascent of privilege levels (prctl(no new privs)), which
makes possible to run our monitoring without admin privi-
leges; and install SECCOMP filters (prctl(set seccomp)).
The Tracee then stops (kill) to allow the Tracer to set nec-
essary options (ptrace(setoptions)). These options include
flags for making ptrace automatically trace further chil-
dren processes and activating better handling of SECCOMP-
related interruptions. Next, the Tracer proceeds to Tracee’s
execution (ptrace(cont)), that executes microservice’s code
(execve).

After Tracee initialization, Tracer keeps an infinite control
loop established by waitpid syscall. This syscall interrupts
the Tracer execution until some of its Tracees makes a syscall
that triggers a notification, obeying the rules of installed
SECCOMP filters.

Figure 4 depicts the read interception for headers extrac-
tion from incoming HTTP requests. Despite this is not being
represented, extractheaders is subjected to some condi-
tional verification before being performed: the read syscall
which caused the interruption must consider an open TCP
socket’s file descriptor and request must be an HTTP re-
quest. ptrace(peekdata)must be performed after the syscall
execution as request would not be available. Also, the origi-
nal syscall is executed without having its parameters or result
modified.

4https://www.kernel.org/doc/html/latest/userspace-
api/seccomp filter.html
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Tracer Tracee Kernel
waitpid(-1)

read()
waitpid(-1) = tracee_id

ptrace(peekdata)

ptrace(cont, tracee_id)

read()

ptrace(peekdata) = request

extractheaders(request)

Figure 4: Headers extraction on read syscall inter-

ception.

Tracer Tracee Kernel
waitpid(-1)

sendto()
waitpid(-1) = tracee_id

ptrace(peekdata)

ptrace(cont, tracee_id)

sendto()

ptrace(peekdata) = request

injectheaders(request)

ptrace(pokedata)

Figure 5: Headers injection on sendto syscall inter-

ception.

Figure 5 shows the sendto interception, which is simi-
lar to read interception, except for: the request retrieved
through peekdata is an outgoing request instead of an incom-
ing one; and pokedata is used to change syscall’s paremeters
by replacing the original request with the one that holds
tracing headers. Hence, as opposed to read’s interception,
parameters’ manipulation occurs before syscall execution.

4 EVALUATION

This section presents an evaluation of the proposed monitor-
ing solution.

4.1 Objectives

We carried out a performance evaluation to assess the per-
formance overhead of the proposed solution on the system-
under-monitoring. In practice, the performance evaluation
targets at i) evaluating the overall overhead imposed by our
implementation; ii) comparing it with the overhead imposed
by other strategies; and iii) measuring metrics which impact
on microservices development and operation.

4.2 Experiments

We used Sock Shop5 app as experimental workload [3]. We
chose applications’ response time as the metric because it is
a good measure of users’ experience [16]. Table 1 summarizes
the experiments’ parameters. The workload counted with
the execution of 1.000 POST HTTP requests targeted at
the ”checkout order operation”, which is the application’s

5https://microservices-demo.github.io

Table 1: Experimental parameters.

Parameter Value

Workload Checkout order

Number of Requests 1.000

Time Between Requests

Randomly generated
following gaussian
distribution (mean: 5,
standard deviation: 2)

Tracing Scenarios

Disabled (No Tracing)
Conventional (Instrumented

Microservices)
Our strategy (Rbinder)

operation that involves more microservices. For trying to
resemble a realistic, low-load, scenario, we also wait for some
seconds between each request.

Our experiments considered three distinct scenarios to
compare the proposed strategy with other monitoring possi-
bilities: i) the non-traced application (No Tracing), ii) the
application traced by microservices’ instrumentation (Instru-
mented Microservices)6, and iii) the application using our
strategy (Rbinder7). The non-traced scenario is accomplished
through the deployment of microservices with configuration
options for disabling tracing. The instrumentation of the
second scenario is achieved through third-party libraries and
code modifications. Finally, in the third scenario, our strat-
egy (which regards usage of proxies plus syscalls monitoring)
comes into play: Envoy Proxy8 proxies are used to inter-
cept the microservices communication and handle tracing
responsibilities; syscalls monitoring is enabled via modifica-
tion of microservices’ Docker images for starting the main
process under our monitoring process. This is as simple as
prefixing the command used for starting the main process
with the command for starting the monitor process. For
instance, if the command for starting the microservice is
java -jar orders.jar, we would issue rbinder java -jar

orders.jar instead for starting the main process under our
monitor process. Both tracing-enabled scenarios used Zipkin9

trace server. All services were deployed as Docker containers
and orchestrated by using Docker Compose.

4.3 Results

Figure 6 shows the results of the experiments. The error bars
indicate a 95% confidence interval. As can be observed, the
response times of both tracing-enabled scenarios are very
close. The mean response time when the application is not
being monitored is 0.110s against 0.116s when tracing is
enabled by traditional means (source code instrumentation)
and 0.121s when our strategy (Rbinder) is in place. This
means that the traditional approach is 1.052 times slower
than the untraced application while ours is 1.097 times slower.

6https://github.com/gfads/microservices-demo/tree/gfads
7https://github.com/gfads/microservices-demo/tree/rbinder
8https://www.envoyproxy.io/
9https://zipkin.io
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Figure 6: Response time of the three assessed sce-

narios.

Hence, considering this metric, the impacts of the tracing
strategies over the application’s performance are very similar.

Figure 7 depicts the CPU usage. Despite the similar usage
pattern, it is possible to distinguish a slightly higher usage
in the tracing-enabled scenarios. The average CPU usage
when the application is not being traced is 17.44%. For in-
strumented microservices, this average increases to 18.58%
(1.07x higher) and for Rbinder it increases to 21.52%(1.23x
higher). This increase could be explained by the extra in-
structions executed for tracing purposes. For our strategy,
this amount is still greater as per the syscalls monitoring.
For instance, extra instructions are needed to copy buffers
from the kernel- to user-space on each syscall interruption.

Figure 8 presents the RAM usage. Here again, consumption
is higher in tracing-enabled scenarios, which shall also be
explained by tracing-related memory allocation. For instance,
the trace server demands a lot of memory. Also, memory
usage in Rbinder is influenced by the deployment of numerous
proxies.

Relying upon off-the-shelf libraries for applications’ in-
strumentation may lead to some unintended consequences
like a considerable increase in components binaries’ size and
time to start them. Figure 9 depicts the size of the files used
for initializing Sock Shop’s microservices. For Go and Java
microservices, these are the binaries resulting of code com-
pilation and JAR archives, respectively. Results show that
instrumentation led to bigger binaries for all microservices,
especially the Java ones, in which case using our solution for
tracing produces binaries 25% smaller on average.

We also measured the time to microservices become oper-
ational, from an application’s user point-of-view. This time
is relevant because it has a direct impact on developers’ and
service operators’ productivity. For instance, developers will
spend much more time if they have to wait for longer initial-
ization periods within their development environment. Also,
operations’ activities such as replicating instances for ser-
vices’ scalability are damaged if microservices take too long
for starting up. Figure 10 presents the results. There is no
statistically significant difference for the initialization time
when the microservices written in Go (user and payment

are considered. The user service presented an average ini-
tialization time of 2.21s (standard deviation = 0.27) for the
instrumented scenario and 2.22s (std dev = 0.17) for Rbinder.
payment took 2.49s on average (std dev = 0.10) to initial-
ize in instrumented scenario and 2.51s (std dev = 0.09) in

Rbinder. However, there is a great difference in initialization
time when Java services are regarded. carts took 46.50s (std
dev = 1.20) to initialize in instrumented scenario and 30.33s
(std dev = 0.78) in Rbinder, orders needed 46.11s (std dev
= 0.98) if instrumented and 32.07 (std dev = 1.90) when
monitored by Rbinder, and shipping took 44.09 (std dev
= 0.99) when instrumented versus 28.20s (std dev = 0.33)
when Rbinder was active.

The evaluation shows that Rbinder poses slightly higher
performance overhead and uses more RAM. Nevertheless, it
does not require any intervention in the application’s code to
enable monitoring. It also avoids some common drawbacks
of conventional instrumentation strategies such as larger bi-
naries and slower microservices’ initialization. Therefore, the
benefits regarding easiness of adoption and reduction of costs
related to instrumentation code development and mainte-
nance might compensate for the drawbacks on performance
and resources consumption.

5 RELATED WORK

Existing work leverages distributed tracing for supporting
microservice-based applications’ evolution [22]. The experi-
ence sheds light over the need of a more lightweight way for
enabling tracing of fine-grained architectures like microser-
vices. This need is further confirmated by works such as the
one by Neves and Pereira [17], which intend to use tracing for
modelling the behaviour of systems architected this way. Hav-
ing this in mind, we organized existing solutions around the
two pillars of our solution: absence of code instrumentation
and use of syscalls.

5.1 Code Instrumentation Strategies

Carosi [4] correlates tracing and profiling data to better sup-
port debugging activities. Similarly to our approach, this
work uses proxies for handling tracing-related data gener-
ation and report. However, Carosi leverages web server’s
modifications for tracing headers propagation while we use
syscalls monitoring and interception.

Monere [27] and Pinpoint [5] use code instrumentation to
collect information that helps in service discovery and fault
detection, respectively. The former statically extracts depen-
dency structures from the documentation, and the latter relies
on middleware-level instrumentation for logging which com-
ponents processed each request. Our strategy is more generic
in the sense that it traces information regarding generic
systems’ behaviours. Moreover, we rely on platform-level in-
strumentation solely for tackling the highly heterogeneous
environment of microservice-based applications.

More similar to our strategy, X-Trace [7] and Dapper [24]
trace requests path to understanding the systems’ behaviour
and aid in debugging of performance issues. They rely upon
application-, library- and middleware-level instrumentation
for propagating tracing metadata used for tying up related
requests. Our proposal also depends on metadata for keeping
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track of requests causality. However, we avoid code instrumen-
tation by using syscalls monitoring for metadata propagation
and proxies for metadata generation and reporting.

Mace and Fonseca [13] propose a strategy for decoupling
tracing’s enablement and usage so that the same instrumen-
tation efforts applied for enabling a system’s tracing can be
used for multiple tools relying on tracing data. Their work
relates to ours in a sense it also intends to mitigate the pain
of tracing fine-grained distributed systems, but it still relies
upon instrumentation.

Kitajima and Matsuoka [10] and Aguilera et al. [1] also pro-
pose strategies for tracing requests paths. The former uses an
imprecise heuristic while the latter proposes two algorithms
for diagnosing causality between requests. These approaches
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Figure 10: Microservices initialization time.

have the benefit of grasping systems’ behaviour without re-
quiring propagation of tracing information. Meanwhile, we
pay the price of precise request tracing by propagating such
information via the operating system’s syscalls monitoring.
Moreover, Aguilera relies upon (middleware-level) instru-
mentation to some degree, which we also avoid as a general
principle due to the potential it has to increase the strategy’s
adoption difficulty in a microservices-based environment.

5.2 Use of Syscalls Strategies

Ardelean et al. [2] uses a tracing strategy to collect data in a
given period to understand the system’s load variations. They
also work with kernel-level calls for diagnosing causalities
between messages exchanged by components at different
levels of the system’s stack. Unlike our proposal, they need
to instrument the code to inject kernel-level calls.

Xu et al. [28] apply a learning-based algorithm to diagnose
causality between multiple requests. Similarly, as we do, they
also leverage kernel’s syscalls but do so in a more passive
manner: kernel’s event traces are used to feed the learning
algorithm. Such strategy results in an imprecise means for
causality detection (as opposed to the one we seek here, which
is a precise one).

1258



Finally, Callahan et al. [19] use a similar approach to solv-
ing a different problem. They leverage syscalls monitoring and
interception to allow re-execution of monitored programs.

6 CONCLUSION

This paper presented a strategy for tracing microservice-
based applications which has transparency as its ultimate
design goal. The solution was motivated by the constraints
imposed by fine-grained service-oriented architectures: instru-
mentation cost is prohibitively expensive in a scenario of such
great technological heterogeneity. Our strategy is grounded
on two main ideas: the usage of proxies for relieving the bur-
den of tracing-related activities from applications’ code and
the complimentary, and necessary, approach for propagating
tracing-related meta-information through monitoring Linux’s
system calls. The results show that our strategy imposes
overhead similar to other tracing solutions without requiring
source code instrumentation and favors microservices opera-
tions because it promotes smaller binaries and faster services
initialization.

Future work shall strive for performance improvements of
the proposed strategy. To this end, we need more experiments
regarding a broader range of workloads and parameters eval-
uation. For example, it would be beneficial to have a grasp
on network impact due to communication overhead. Also,
there are some traits presented in related works that could
be pursued. For instance, it is an open question how the
introduced strategy could be extended to support tracing of
application-level information. Finally, we suggested our ap-
proach to be protocol-agnostic. With the increasing adoption
of protocols other than HTTP for implementing communica-
tion between services, it would be useful to explore how our
strategy could be used for tracing microservices leveraging
further protocols.
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